74 research outputs found

    Undecidability of the Spectral Gap in One Dimension

    Get PDF
    The spectral gap problem - determining whether the energy spectrum of a system has an energy gap above ground state, or if there is a continuous range of low-energy excitations - pervades quantum many-body physics. Recently, this important problem was shown to be undecidable for quantum spin systems in two (or more) spatial dimensions: there exists no algorithm that determines in general whether a system is gapped or gapless, a result which has many unexpected consequences for the physics of such systems. However, there are many indications that one dimensional spin systems are simpler than their higher-dimensional counterparts: for example, they cannot have thermal phase transitions or topological order, and there exist highly-effective numerical algorithms such as DMRG - and even provably polynomial-time ones - for gapped 1D systems, exploiting the fact that such systems obey an entropy area-law. Furthermore, the spectral gap undecidability construction crucially relied on aperiodic tilings, which are not possible in 1D. So does the spectral gap problem become decidable in 1D? In this paper we prove this is not the case, by constructing a family of 1D spin chains with translationally-invariant nearest neighbour interactions for which no algorithm can determine the presence of a spectral gap. This not only proves that the spectral gap of 1D systems is just as intractable as in higher dimensions, but also predicts the existence of qualitatively new types of complex physics in 1D spin chains. In particular, it implies there are 1D systems with constant spectral gap and non-degenerate classical ground state for all systems sizes up to an uncomputably large size, whereupon they switch to a gapless behaviour with dense spectrum.Comment: 7 figure

    Entanglement subvolume law for 2D frustration-free spin systems

    Full text link
    Let HH be a frustration-free Hamiltonian describing a 2D grid of qudits with local interactions, a unique ground state, and local spectral gap lower bounded by a positive constant. For any bipartition defined by a vertical cut of length LL running from top to bottom of the grid, we prove that the corresponding entanglement entropy of the ground state of HH is upper bounded by O~(L5/3)\tilde{O}(L^{5/3}). For the special case of a 1D chain, our result provides a new area law which improves upon prior work, in terms of the scaling with qudit dimension and spectral gap. In addition, for any bipartition of the grid into a rectangular region AA and its complement, we show that the entanglement entropy is upper bounded as O~(A5/3)\tilde{O}(|\partial A|^{5/3}) where A\partial A is the boundary of AA. This represents the first subvolume bound on entanglement in frustration-free 2D systems. In contrast with previous work, our bounds depend on the local (rather than global) spectral gap of the Hamiltonian. We prove our results using a known method which bounds the entanglement entropy of the ground state in terms of certain properties of an approximate ground state projector (AGSP). To this end, we construct a new AGSP which is based on a robust polynomial approximation of the AND function and we show that it achieves an improved trade-off between approximation error and entanglement

    Quantum codes from neural networks

    Get PDF
    Funder: Draper’s Company Research FellowshipAbstract: We examine the usefulness of applying neural networks as a variational state ansatz for many-body quantum systems in the context of quantum information-processing tasks. In the neural network state ansatz, the complex amplitude function of a quantum state is computed by a neural network. The resulting multipartite entanglement structure captured by this ansatz has proven rich enough to describe the ground states and unitary dynamics of various physical systems of interest. In the present paper, we initiate the study of neural network states in quantum information-processing tasks. We demonstrate that neural network states are capable of efficiently representing quantum codes for quantum information transmission and quantum error correction, supplying further evidence for the usefulness of neural network states to describe multipartite entanglement. In particular, we show the following main results: (a) neural network states yield quantum codes with a high coherent information for two important quantum channels, the generalized amplitude damping channel and the dephrasure channel. These codes outperform all other known codes for these channels, and cannot be found using a direct parametrization of the quantum state. (b) For the depolarizing channel, the neural network state ansatz reliably finds the best known codes given by repetition codes. (c) Neural network states can be used to represent absolutely maximally entangled states, a special type of quantum error-correcting codes. In all three cases, the neural network state ansatz provides an efficient and versatile means as a variational parametrization of these highly entangled states

    The complexity of divisibility.

    Get PDF
    We address two sets of long-standing open questions in linear algebra and probability theory, from a computational complexity perspective: stochastic matrix divisibility, and divisibility and decomposability of probability distributions. We prove that finite divisibility of stochastic matrices is an NP-complete problem, and extend this result to nonnegative matrices, and completely-positive trace-preserving maps, i.e. the quantum analogue of stochastic matrices. We further prove a complexity hierarchy for the divisibility and decomposability of probability distributions, showing that finite distribution divisibility is in P, but decomposability is NP-hard. For the former, we give an explicit polynomial-time algorithm. All results on distributions extend to weak-membership formulations, proving that the complexity of these problems is robust to perturbations.Johannes Bausch would like to thank the German National Academic Foundation and EPSRC for financial support. Toby Cubitt is supported by the Royal Society. The authors are grateful to the Isaac Newton Institute for Mathematical Sciences, where part of this work was carried out, for their hospitality during the 2013 programme “Mathematical Challenges in Quantum Information Theory”
    corecore